99 research outputs found

    Epitaxial EuO Thin Films on GaAs

    Full text link
    We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57{\deg}, a significant remanent magnetization, and a Curie temperature of 69 K.Comment: 5 pages, 3 figure

    Identification of medium mass (A=60-80) ejectiles from 15 MeV/nucleon peripheral heavy-ion collisions with the MAGNEX large-acceptance spectrometer

    Full text link
    An approach to identify medium-mass ejectiles from peripheral heavy-ion reactions in the energy region of 15 MeV/nucleon is developed for data obtained with a large acceptance magnetic spectrometer. This spectrometer is equipped with a focal plane multidetector, providing position, angle, energy loss and residual energy of the ions along with measurement of the time-of-flight. Ion trajectory reconstruction is performed at high order and ion mass is obtained with a resolution of better than 1/150. For the unambiguous particle identification however, the reconstruction of both the atomic number Z and the ionic charge q of the ions is critical and it is suggested, within this work, to be performed prior to mass identification. The new proposed method was successfully applied to MAGNEX spectrometer data, for identifying neutron-rich ejectiles related to multinucleon transfer generated in the 70Zn+ 64Ni collision at 15 MeV/nucleon. This approach opens up the possibility of employing heavy-ion reactions with medium-mass beams below the Fermi energy (i.e., in the region 15-25 MeV/nucleon) in conjunction with large acceptance ray tracing spectrometers, first, to study the mechanism(s) of nucleon transfer in these reactions and, second, to produce and study very neutron-rich or even new nuclides in previously unexplored regions of the nuclear landscape.Comment: 6 pages, 6figure

    Characterization of a gas detector prototype based on Thick-GEM for the MAGNEX focal plane detector

    Full text link
    A new gas detector prototype for the upgrade of the focal plane detector of the MAGNEX large-acceptance magnetic spectrometer has been developed and tested in view of the NUMEN project. It has been designed to operate at low gas pressure for detecting medium to heavy ions in the energy range between 15 and 60 AMeV. It is a drift chamber based on Multi-layer Thick-GEM (M-THGEM) as electron multiplication technology. Tests with two different M-THGEM layouts have been performed using both a radioactive α\alpha-particle source and accelerated heavy-ion beams. The characterization of the detector in terms of measured currents that flow through the electrodes as a function of different parameters, including applied voltages, gas pressure and rate of incident particle, is described. The gain and ion backflow properties have been studied

    One-neutron transfer reaction in the 18^{18}O + 48^{48}Ti collision at 275 MeV

    Full text link
    The present article reports new data on the 48^{48}Ti(18^{18}O,17^{17}O)49^{49}Ti reaction at 275 MeV incident energy as part of the systematic research pursued within the NUMEN project. Supplementary measurements of the same reaction on 16^{16}O and 27^{27}Al targets were also performed in order to estimate the background arising from the use of a composite target (TiO2_{2} + 27^{27}Al). These data were analyzed under the same theoretical framework as those obtained with the titanium target in order to reinforce the conclusions of our analysis. Differential cross-section angular distribution measurements for the 17^{17}O8+^{8+} ejectiles were performed in a wide angular range by using the MAGNEX large acceptance magnetic spectrometer. The experimental results were analyzed within the distorted-wave and coupled-channels Born Approximation frameworks. The optical potentials at the entrance and exit channels were calculated in a double folding approach adopting the S\~ao Paulo potential, and the spectroscopic amplitudes for the projectile and target overlaps were obtained from large-scale shell model calculations. The differential cross-sections are well-described by the theoretical calculations, where a weak coupling to collective excitations of projectile and target is inferred. The sensitivity of transfer cross-sections on different model spaces adopted in nuclear structure calculations, is also discussed

    Background estimate in heavy-ion two-body reactions measured by the MAGNEX spectrometer

    Get PDF
    The MAGNEX magnetic spectrometer is nowadays used in the experimental measurements of rare quasi-elastic reactions between heavy ions at intermediate energy within the NUMEN project. The small cross sections involved in such processes under the large yields due to competitive reaction channels have motivated an accurate control of the background sources. In such view, the not ideal particle identification could introduce spurious contributions which have been identified and evaluated in the present analysis

    The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay

    Get PDF
    Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described

    A constrained analysis of the 40Ca(18O,18F)40K direct charge exchange reaction mechanism at 275 Mev

    Get PDF
    The40 Ca(18 O,18 F)40 K single charge exchange (SCE) reaction is explored at an incident energy of 275 MeV and analyzed consistently by collecting the elastic scattering and inelastic scattering data under the same experimental conditions. Full quantum-mechanical SCE calculations of the direct mechanism are performed by including microscopic nuclear structure inputs and adopting either a bare optical potential or a coupled channel equivalent polarization potential (CCEP) constrained by the elastic and inelastic data. The direct SCE mechanism describes the magnitude and shape of the angular distributions rather well, thus suggesting the suppression of sequential multi-nucleon transfer processes

    One-proton transfer reaction for the O 18 + Ti 48 system at 275 MeV

    Get PDF
    Single-nucleon transfer reactions are processes that selectively probe single-particle components of the populated many-body nuclear states. In this context, recent efforts have been made to build a unified description of the rich nuclear spectroscopy accessible in heavy-ion collisions. An example of this multichannel approach is the study of the competition between successive nucleon transfer and charge exchange reactions, the latter being of particular interest in the context of single and double beta decay studies. To this extent, the one-proton pickup reaction Ti48(O18,F19)Sc47 at 275 MeV was measured for the first time, under the NUMEN experimental campaign. Differential cross-section angular distribution measurements for the F19 ejectiles were performed at INFN-LNS in Catania by using the MAGNEX large acceptance magnetic spectrometer. The data were analyzed within the distorted-wave and coupled-channels Born approximation frameworks. The initial and final-state interactions were described adopting the São Paulo potential, whereas the spectroscopic amplitudes for the projectile and target overlaps were derived from shell-model calculations. The theoretical cross sections are found to be in very good agreement with the experimental data, suggesting the validity of the optical potentials and the shell-model description of the involved nuclear states within the adopted model space

    The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay

    Get PDF
    Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described
    • …
    corecore